Photonic crystals: making a cage for light

نویسنده

  • Kuipers
چکیده

Photonic crystals are optical materials with an intricate three-dimensional structure that manipulates light in unusual ways thanks to multiple Bragg diffraction. The structure has the length scale of the order of the wavelength of light. In future, such crystals could steer light beams around tiny optical chips or be the heart of a new breed of efficient light emitters. An example of a photonic crystal is the gem opal, which consists of a regular array of tiny silicate spheres, ordered like the atoms in a crystal lattice, but on a scale thousand times larger. If the structure has a large variation in refractive index a "photonic bandgap" occurs. Under these special circumstances, Bragg diffraction prevents a certain range of wavelengths from propagating in any direction inside the crystal. As an important quantumoptical consequence, spontaneous emission of excited atoms or molecules inside the crystal is completely inhibited. Moreover, controlled defects in a photonic crystal will result in localized states in the band gap, as if light is trapped in a cage (see Figure 1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of optical Kerr coefficient on photonic band structures of hexagonal-lattice function photonic crystals

In this paper, we have studied the photonic band structure of function photonic crystals in which the dielectric constant of the scattering centers (rods) is a function of space coordinates. The under-studied lattice is hexagonal and cross section of rods has a circular symmetry embedded in the air background. Photonic band structures for both electric and magnetic polarizations of the electrom...

متن کامل

Band Structures for 2D Photonic Crystals in Presence of Nonlinear Kerr Effect ‎Calculated by Use of Nonlinear Finite Difference Time Domain (NFDTD) Method‎

We report the simulation results for impact of nonlinear Kerr effect on band structures of a ‎two dimensional photonic crystal (2D-PhC) with no defect, a PhC based W1-waveguide ‎‎(W1W), and also Coupled-Cavity Waveguides (CCWs). All PhC structres are assumed to a ‎square lattice of constant a made of GaAs rods of radius r=0.2a, in an air background. The ‎numerical simulation was performed using...

متن کامل

Low Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure

Background and Objectives: Recently, photonic crystals have been considered as the basic structures for the realization of various optical devices for high speed optical communication. Methods: In this research, two dimensional photonic crystals are used for designing all optical logic gates. A photonic crystal structure with a triangular lattice is proposed for making NAND, XNOR, and OR optica...

متن کامل

Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals

In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

متن کامل

Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001